

«LNDC Kazakhstan ltd.» Қазақстан Республикасы 090302 БҚО Ақсай, 7 мкр, 1П, кабинет 2/5 Tel.: +7-711-291-80-34

info@lndc.kz www.lndc.kz

+7-777-671-30-55

TOO «LNDC Kazakhstan ltd.» Республика Казахстан 090302 ЗКО Аксай, 7 мкр, 1П, кабинет 2/5 Tel.: +7-711-291-80-34

> +7-777-671-30-55 info@Indc.kz | www.Indc.kz

## QL40-NEU

## **NEUTRON THERMAL NEUTRON**

QL40-NEU — нижний прибор серии Quick Link, который можно комбинировать с другими инструментами QL в зависимости от ваших задач. Она измеряет нейтронную пористость в единицах отсчета в секунду, которая может быть напрямую связана с пористостью пласта. Нейтрон-нейтронный каротаж по тепловым нейтронам основан на облучении горных пород нейтронами быстрыми ОТ источника регистрации нейтронов по разрезу скважины, которые в результате взаимодействия с породообразующими элементами замедлились до тепловой энергии.

Регистрируемая интенсивность тепловых нейтронов зависит OT замедляющей и поглощающей способности горной породы. Наибольшая потеря энергии нейтрона наблюдается при соударении ядром, С имеющего массу равную единице, т.е. с ядром водорода. Таким образом, по данным ННК-Т можно определять водородосодержание горных пород, которое ДЛЯ пластовколлекторов напрямую связано с пористостью.

## Решаемые задачи:

- 1. Количественная пористость в реальном времени
- 2. Улучшенное разрешение тонкого слоя



| Технические характеристики |                               |
|----------------------------|-------------------------------|
| Диаметр                    | 40 mm                         |
| Длина                      | 1.34 M                        |
| Bec                        | 5.5 кг                        |
| Макс.                      | 70.00                         |
| температура                | 70 ºC                         |
| Макс. давление             | 20 МПа                        |
| Источник                   |                               |
| Am241Be, 1-3 Кюри          |                               |
| Датчик                     |                               |
|                            | Эффективность                 |
|                            | детектора,                    |
| Нейтронный                 | заполненного <sup>3</sup> Не, |
| детектор                   | для тепловых                  |
|                            | нейтронов с Е≈0,025           |
|                            | эВ близ-ка к 100%.            |
| Расстояние                 | 35 см                         |
|                            | Нейтронная                    |
| Измерение                  | пористость                    |
|                            | (имп/сек)                     |
| Условия эксплуатации       |                               |
|                            | Моно,                         |
| Кабельная линия            | многожильный                  |
|                            | коаксиальный                  |
| Регистратор                | Scout/Bbox/Matrix             |
|                            | в завис-ти от длины           |
| Телеметрия                 | кабеля, типа и                |
|                            | системы                       |
| Центраторы                 | Не требуется                  |
|                            | Сухая или                     |
| Скважинные                 | заполненная                   |
| условия                    | жидкостью                     |
|                            | скважина                      |
|                            |                               |

## Принцип измерения

Поток тепловых нейтронов, создаваемый замедлением нейтронов высокой энергии, испускаемых нейтронным источником Am241Be, в основном связан с концентрацией ионов водорода в пласте. В насыщенных породах концентрация ионов водорода связана с пористостью, заполненной водой. В ненасыщенных породах поток тепловых нейтронов связан с влажностью. В нейтронном зонде используется детектор тепловых нейтронов He-3. Зонд был тщательно разработан, чтобы максимизировать чувствительность детектора, так что хорошие результаты могут быть достигнуты при силе источника всего 1 Кюри. Источник переносится в специально разработанном экране, а сам зонд является инструментом для работы с источником.